You are viewing the site in preview mode

Skip to main content

Table 6 Performance comparison for K-fold cross validation with different values of K for dataset #2

From: A robust Parkinson’s disease detection model based on time-varying synaptic efficacy function in spiking neural network

Technology

Accuracy (in %)

Sensitivity (in %)

Specificity (in %)

MCC

Precision

F1 Score

Gmean

K = 3

 MLP-NN

78.45

81.23

74.65

0.5612

0.8023

0.8345

0.7864

 RBF-NN

81.27

76.54

85.12

0.6138

0.8432

0.8117

0.798

 RNN

80.02

80.55

79.42

0.5914

0.8056

0.8015

0.8002

 LSTM

79.03

73.12

84.78

0.5784

0.7986

0.7623

0.7664

 SEFRON [Dataset#2]

86.12

85.23

87.34

0.7325

0.8724

0.8506

0.8652

K = 5

 MLP-NN

77.88

75.34

78.56

0.5431

0.791

0.7709

0.7736

 RBF-NN

84.11

90.67

77.25

0.6659

0.8154

0.8523

0.8459

 RNN

84.03

82.47

86.65

0.7199

0.8412

0.835

0.8325

 LSTM

81.67

78.22

82.4

0.6197

0.8061

0.8305

0.8183

 SEFRON [Dataset#2]

88.03

86.12

89.85

0.7551

0.9023

0.8825

0.8861

K = 8

 MLP-NN

82.14

78.67

85.42

0.6115

0.8189

0.8027

0.8049

 RBF-NN

86.32

81.25

92.1

0.7424

0.9057

0.8615

0.8722

 RNN

84.03

82.47

86.65

0.7199

0.8412

0.835

0.8325

 LSTM

83.09

80.21

85.18

0.6743

0.795

0.8202

0.8111

 SEFRON [Dataset#2]

90.14

89.45

91.32

0.7921

0.915

0.8913

0.8957

K = 10

 MLP-NN

83.33

79.32

88.67

0.6478

0.85

0.81

0.816

 RBF-NN

85.22

84.45

90.13

0.7115

0.9

0.87

0.877

 RNN

86

88.77

86.5

0.7521

0.873

0.8714

0.8750

 LSTM

84.53

86.67

82.22

0.6814

0.7905

0.8327

0.8141

 SEFRON [Dataset#2]

91.94

99.95

87.69

0.82

0.77

0.89

0.87